Imaging Tunable Quantum Hall Symmetry-Broken Orders in Graphene

  • Cao, Y. et al. Correlated behavior of half-filled insulator in magic-angle graphene superlattices. Nature 55680–84 (2018).

    ADS CAS PubMed Google Scholar

  • Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 55643–50 (2018).

    ADS CAS PubMed Google Scholar

  • Wong, D. et al. Cascade of electronic transitions in magic angle twisted bilayer graphene. Nature 582198-202 (2020).

    ADS CAS PubMed Google Scholar

  • Zondiner, U. et al. Cascade of phase transitions and Dirac relaunch in magic angle graphene. Nature 582203-208 (2020).

    ADS CAS PubMed Google Scholar

  • Saito, Y. et al. Hofstadter subband ferromagnetism and symmetry-broken Chern insulators in twisted bilayer graphene. Nat. Phys. 17478–781 (2021).

    CAS Google Scholar

  • Nomura, K. & MacDonald, AH Quantum Hall Ferromagnetism in Graphene. Phys. Rev. Lett. 96256602 (2006).

    ADS PubMedGoogle Scholar

  • Alicea, J. & Fisher, MPA Integer quantum Hall effect of graphene in ferromagnetic and paramagnetic regimes. Phys. Rev. B 74075422 (2006).

    Google Scholar announcements

  • Herbut, IF Theory of Integer Quantum Hall Effect in Graphene. Phys. Rev. B 75165411 (2007).

    Google Scholar announcements

  • Jung, J. & MacDonald, AH Theory of magnetic field-induced insulation in neutral graphene sheets. Phys. Rev. B 80235417 (2009).

    Google Scholar announcements

  • Kharitonov, M. Phase diagram for the v = 0 quantum Hall state in single-layer graphene. Phys. Rev. B 85155439 (2012).

    Google Scholar announcements

  • Young, AF et al. Spin and valley quantum hall ferromagnetism in graphene. Nat. Phys. 8550-556 (2012).

    CAS Google Scholar

  • Young, AF et al. Tunable symmetry breaking and helical edge transport in a quantum spin Hall state of graphene. Nature 505528-532 (2014).

    ADS CAS PubMed Google Scholar

  • Veyrat, L. et al. Helical quantum Hall phase in graphene on SrTiO3. Science 367781–786 (2020).

    ADS CAS PubMed Google Scholar

  • Li, S.-Y., Zhang, Y., Yin, L.-J. & He, L. Scanning tunneling microscope study of quantum isospin Hall ferromagnetic states at Landau zero level in a graphene monolayer. Phys. Rev. B 100085437 (2019).

    Google Scholar CAS Announcements

  • Checkelsky, JG, Li, L. & Ong, NP Zero-energy state in graphene in a high magnetic field. Phys. Rev. Lett. 100206801 (2008).

    ADS PubMedGoogle Scholar

  • Checkelsky, JG, Li, L. & Ong, NP Divergent resistance at the Dirac point in graphene: evidence for a transition in a high magnetic field. Phys. Rev. B 79115434 (2009).

    Google Scholar announcements

  • Ezawa, ZF Quantum Hall Effects (World Scientific, 2013).

  • Herbut, IF SO(3) symmetry between Neel and ferromagnetic order parameters for graphene in a magnetic field. Phys. Rev. B 76085432 (2007).

    Google Scholar announcements

  • Kharitonov, M., Juergens, S. & Trauzettel, B. Interplay of topology and interactions in quantum Hall-effect topological insulators: U(1) symmetry, tunable Luttinger liquid, and interaction-induced phase transitions. Phys. Rev. B 94035146 (2016).

    Google Scholar announcements

  • Zhang, Y. et al. Landau-level splitting in graphene under high magnetic fields. Phys. Rev. Lett. 96136806 (2006).

    ADS CAS PubMed Google Scholar

  • Abanin, DA et al. Dissipative quantum Hall effect in graphene near the Dirac point. Phys. Rev. Lett. 98196806 (2007).

    ADS PubMedGoogle Scholar

  • Andrei, EY, Li, G. & Du, X. Electronic properties of graphene: a perspective from scanning tunneling microscopy and magnetotransport. Rep. Prog. Phys. 75056501 (2012).

    ADS PubMedGoogle Scholar

  • Dial, OE, Ashoori, RC, Pfeiffer, LN & West, KW High resolution spectroscopy of two-dimensional electronic systems. Nature 448176-179 (2007).

    ADS CAS PubMed Google Scholar

  • Luican, A., Li, G. & Andrei, EY Quantized Landau level spectrum and its density dependence in graphene. Phys. Rev. B 83041405(R) (2011).

    Google Scholar announcements

  • Chae, J. et al. Renormalization of graphene dispersion rate determined from tunneling spectroscopy. Phys. Rev. Lett. 109116802 (2012).

    ADS PubMedGoogle Scholar

  • Jung, S. et al. Evolution of the microscopic localization of graphene in a magnetic field from diffusion resonances to quantum dots. Nat. Phys. 7245-251 (2011).

    CAS Google Scholar

  • Liu, X. et al. Visualization of broken symmetry and topological defects in a quantum Hall ferromagnet. Science 375321–326 (2021).

    ADS PubMedGoogle Scholar

  • Motruk, J., Grushin, AG, de Juan, F. & Pollmann, F. Interaction-driven phases in the half-filled honeycomb network: a group study of infinite-density matrix renormalization. Phys. Rev. B 92085147 (2015).

    Google Scholar announcements

  • Capponi, S. & Läuchli, AM Phase diagram of interacting spinless fermions on the honeycomb lattice: a comprehensive study of exact diagonalization. Phys. Rev. B 92085146 (2015).

    Google Scholar announcements

  • Alba, E., Fernandez-Gonzalvo, X., Mur-Petit, J., Pachos, JK & Garcia-Ripoll, JJ See topological order in time-of-flight measurements. Phys. Rev. Lett. 107235301 (2011).

    ADS CAS PubMed Google Scholar

  • Peterson, MR & Nayak, C. Effects of Landau level mixing on the fractional quantum Hall effect in single-layer graphene. Phys. Rev. Lett. 113086401 (2014).

    ADS CAS PubMed Google Scholar

  • Feshami, B. & Fertig, HA Hartree-Fock study of the v = 0 quantum Hall state of single-layer graphene with short-range interactions. Phys. Rev. B 94245435 (2016).

    Google Scholar announcements

  • Das, A., Kaul, RK & Murthy, G. Coexistence of tilted antiferromagnetism and bond order in v = 0 graphene. Phys. Rev. Lett. 128106803 (2021).

  • Takei, S., Yacobi, A., Halperin, BI, and Tserkovnyak, Y. Spin superfluidity in the v = 0 quantum Hall state of graphene. Phys. Rev. Lett. 116216801 (2016).

    ADS PubMedGoogle Scholar

  • Wei, DS et al. Electrical generation and detection of spin waves in a quantum Hall ferromagnet. Science 362229–233 (2018).

    ADS CAS PubMed Google Scholar

  • Stepanov, P. et al. Long-range spin transport through a graphene quantum Hall antiferromagnet. Nat. Phys. 14907–911 (2018).

    CAS Google Scholar

  • Assouline, A. et al. Unveiling the excitonic properties of magnons in a quantum Hall ferromagnet. Nat. Phys. 171369-1374 (2021).

    CAS Google Scholar

  • Knothe, A. & Jolicoeur, T. Edge structure of graphene monolayers in the v = 0 quantum Hall state. Phys. Rev. B 92165110 (2015).

    Google Scholar announcements

  • Atteia, J., Lian, Y. & Goerbig, MO Zoo of Skyrmion in charge-neutral graphene in a strong magnetic field. Phys. Rev. B 103035403 (2021).

    Google Scholar CAS Announcements

  • Hou, C.-Y., Chamon, C. & Mudry, C. Splitting of electrons in two-dimensional graphene-like structures. Phys. Rev. Lett. 98186809 (2007).

    ADS PubMedGoogle Scholar

  • Nomura, K., Ryu, S. & Lee, D.-H. Field-induced Kosterlitz–Thouless transition in NOT = 0 level Landau of graphene. Phys. Rev. Lett. 103216801 (2009).

    ADS PubMedGoogle Scholar

  • Wang, L. et al. One-dimensional electrical contact with a two-dimensional material. Science 342614-617 (2013).

    ADS CAS PubMed Google Scholar

  • Li, X.-X. et al. Gate-controlled reversible rectification behavior in an atomically thin contacted MoS tunnel2 transistor. Nat. Commmon. 8970 (2017).

    ADS PubMed PubMed Central Google Scholar

  • Choi, Y. et al. Electronic correlations in twisted bilayer graphene near the magic angle. Nat. Phys. 151174-1180 (2019).

    CAS Google Scholar

  • Sakudo, T. & Unoki, H. Dielectric properties of SrTiO3 at low temperature. Phys. Rev. Lett. 26851–853 (1971).

    Google Scholar CAS Announcements

  • Hemberger, J., Lunkenheimer, P., Viana, R., Böhmer, R. & Loidl, A. Electric field-dependent dielectric constant and nonlinear susceptibility in SrTiO3. Phys. Rev. B 5213159 (1995).

    Google Scholar CAS Announcements

  • Sachs, R., Lin, Z. & Shi, J. Ferroelectric-like SrTiO3 surface dipoles probed by graphene. Science. representing 43657 (2014).

    ADS PubMed PubMed Central Google Scholar

  • Chen, S., Chen, X., Duijnstee, EA, Sanyal, B., and Banerjee, T. Unveiling temperature-induced structural domains and oxygen vacancy motion in SrTiO3 with graphene. ACS Appl. Mater. interfaces 1252915–52921 (2020).

    CAS PubMed PubMed Central Google Scholar

  • Groth, CW, Wimmer, M., Akhmerov, AR & Waintal, X. Kwant: A software package for quantum transport. New J. Phys. 16063065 (2014).

    Google Scholar announcements

  • Hauschild, J. & Pollmann, F. Efficient Numerical Simulations with Tensor Networks: Tensor Network Python (TeNPy). SciPost Physics. Reader Notes 5, https://doi.org/10.21468/SciPostPhysLectNotes.5 (2018).

  • Coissard, A. et al. Data for imaging tunable Quantum Hall broken symmetry orders in graphene. Zenodo https://doi.org/10.5281/zenodo.5838139 (2022).

  • About Alexander Estrada

    Check Also

    US Treasury Sanctions First Crypto Mixer – Regulation Bitcoin News

    The US Treasury Department’s Office of Foreign Assets Control (OFAC) has issued its first-ever sanctions …