Cao, Y. et al. Correlated behavior of half-filled insulator in magic-angle graphene superlattices. Nature 55680–84 (2018).
Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 55643–50 (2018).
Wong, D. et al. Cascade of electronic transitions in magic angle twisted bilayer graphene. Nature 582198-202 (2020).
Zondiner, U. et al. Cascade of phase transitions and Dirac relaunch in magic angle graphene. Nature 582203-208 (2020).
Saito, Y. et al. Hofstadter subband ferromagnetism and symmetry-broken Chern insulators in twisted bilayer graphene. Nat. Phys. 17478–781 (2021).
Nomura, K. & MacDonald, AH Quantum Hall Ferromagnetism in Graphene. Phys. Rev. Lett. 96256602 (2006).
Alicea, J. & Fisher, MPA Integer quantum Hall effect of graphene in ferromagnetic and paramagnetic regimes. Phys. Rev. B 74075422 (2006).
Herbut, IF Theory of Integer Quantum Hall Effect in Graphene. Phys. Rev. B 75165411 (2007).
Jung, J. & MacDonald, AH Theory of magnetic field-induced insulation in neutral graphene sheets. Phys. Rev. B 80235417 (2009).
Kharitonov, M. Phase diagram for the v = 0 quantum Hall state in single-layer graphene. Phys. Rev. B 85155439 (2012).
Young, AF et al. Spin and valley quantum hall ferromagnetism in graphene. Nat. Phys. 8550-556 (2012).
Young, AF et al. Tunable symmetry breaking and helical edge transport in a quantum spin Hall state of graphene. Nature 505528-532 (2014).
Veyrat, L. et al. Helical quantum Hall phase in graphene on SrTiO3. Science 367781–786 (2020).
Li, S.-Y., Zhang, Y., Yin, L.-J. & He, L. Scanning tunneling microscope study of quantum isospin Hall ferromagnetic states at Landau zero level in a graphene monolayer. Phys. Rev. B 100085437 (2019).
Checkelsky, JG, Li, L. & Ong, NP Zero-energy state in graphene in a high magnetic field. Phys. Rev. Lett. 100206801 (2008).
Checkelsky, JG, Li, L. & Ong, NP Divergent resistance at the Dirac point in graphene: evidence for a transition in a high magnetic field. Phys. Rev. B 79115434 (2009).
Ezawa, ZF Quantum Hall Effects (World Scientific, 2013).
Herbut, IF SO(3) symmetry between Neel and ferromagnetic order parameters for graphene in a magnetic field. Phys. Rev. B 76085432 (2007).
Kharitonov, M., Juergens, S. & Trauzettel, B. Interplay of topology and interactions in quantum Hall-effect topological insulators: U(1) symmetry, tunable Luttinger liquid, and interaction-induced phase transitions. Phys. Rev. B 94035146 (2016).
Zhang, Y. et al. Landau-level splitting in graphene under high magnetic fields. Phys. Rev. Lett. 96136806 (2006).
Abanin, DA et al. Dissipative quantum Hall effect in graphene near the Dirac point. Phys. Rev. Lett. 98196806 (2007).
Andrei, EY, Li, G. & Du, X. Electronic properties of graphene: a perspective from scanning tunneling microscopy and magnetotransport. Rep. Prog. Phys. 75056501 (2012).
Dial, OE, Ashoori, RC, Pfeiffer, LN & West, KW High resolution spectroscopy of two-dimensional electronic systems. Nature 448176-179 (2007).
Luican, A., Li, G. & Andrei, EY Quantized Landau level spectrum and its density dependence in graphene. Phys. Rev. B 83041405(R) (2011).
Chae, J. et al. Renormalization of graphene dispersion rate determined from tunneling spectroscopy. Phys. Rev. Lett. 109116802 (2012).
Jung, S. et al. Evolution of the microscopic localization of graphene in a magnetic field from diffusion resonances to quantum dots. Nat. Phys. 7245-251 (2011).
Liu, X. et al. Visualization of broken symmetry and topological defects in a quantum Hall ferromagnet. Science 375321–326 (2021).
Motruk, J., Grushin, AG, de Juan, F. & Pollmann, F. Interaction-driven phases in the half-filled honeycomb network: a group study of infinite-density matrix renormalization. Phys. Rev. B 92085147 (2015).
Capponi, S. & Läuchli, AM Phase diagram of interacting spinless fermions on the honeycomb lattice: a comprehensive study of exact diagonalization. Phys. Rev. B 92085146 (2015).
Alba, E., Fernandez-Gonzalvo, X., Mur-Petit, J., Pachos, JK & Garcia-Ripoll, JJ See topological order in time-of-flight measurements. Phys. Rev. Lett. 107235301 (2011).
Peterson, MR & Nayak, C. Effects of Landau level mixing on the fractional quantum Hall effect in single-layer graphene. Phys. Rev. Lett. 113086401 (2014).
Feshami, B. & Fertig, HA Hartree-Fock study of the v = 0 quantum Hall state of single-layer graphene with short-range interactions. Phys. Rev. B 94245435 (2016).
Das, A., Kaul, RK & Murthy, G. Coexistence of tilted antiferromagnetism and bond order in v = 0 graphene. Phys. Rev. Lett. 128106803 (2021).
Takei, S., Yacobi, A., Halperin, BI, and Tserkovnyak, Y. Spin superfluidity in the v = 0 quantum Hall state of graphene. Phys. Rev. Lett. 116216801 (2016).
Wei, DS et al. Electrical generation and detection of spin waves in a quantum Hall ferromagnet. Science 362229–233 (2018).
Stepanov, P. et al. Long-range spin transport through a graphene quantum Hall antiferromagnet. Nat. Phys. 14907–911 (2018).
Assouline, A. et al. Unveiling the excitonic properties of magnons in a quantum Hall ferromagnet. Nat. Phys. 171369-1374 (2021).
Knothe, A. & Jolicoeur, T. Edge structure of graphene monolayers in the v = 0 quantum Hall state. Phys. Rev. B 92165110 (2015).
Atteia, J., Lian, Y. & Goerbig, MO Zoo of Skyrmion in charge-neutral graphene in a strong magnetic field. Phys. Rev. B 103035403 (2021).
Hou, C.-Y., Chamon, C. & Mudry, C. Splitting of electrons in two-dimensional graphene-like structures. Phys. Rev. Lett. 98186809 (2007).
Nomura, K., Ryu, S. & Lee, D.-H. Field-induced Kosterlitz–Thouless transition in NOT = 0 level Landau of graphene. Phys. Rev. Lett. 103216801 (2009).
Wang, L. et al. One-dimensional electrical contact with a two-dimensional material. Science 342614-617 (2013).
Li, X.-X. et al. Gate-controlled reversible rectification behavior in an atomically thin contacted MoS tunnel2 transistor. Nat. Commmon. 8970 (2017).
Choi, Y. et al. Electronic correlations in twisted bilayer graphene near the magic angle. Nat. Phys. 151174-1180 (2019).
Sakudo, T. & Unoki, H. Dielectric properties of SrTiO3 at low temperature. Phys. Rev. Lett. 26851–853 (1971).
Hemberger, J., Lunkenheimer, P., Viana, R., Böhmer, R. & Loidl, A. Electric field-dependent dielectric constant and nonlinear susceptibility in SrTiO3. Phys. Rev. B 5213159 (1995).
Sachs, R., Lin, Z. & Shi, J. Ferroelectric-like SrTiO3 surface dipoles probed by graphene. Science. representing 43657 (2014).
Chen, S., Chen, X., Duijnstee, EA, Sanyal, B., and Banerjee, T. Unveiling temperature-induced structural domains and oxygen vacancy motion in SrTiO3 with graphene. ACS Appl. Mater. interfaces 1252915–52921 (2020).
Groth, CW, Wimmer, M., Akhmerov, AR & Waintal, X. Kwant: A software package for quantum transport. New J. Phys. 16063065 (2014).
Hauschild, J. & Pollmann, F. Efficient Numerical Simulations with Tensor Networks: Tensor Network Python (TeNPy). SciPost Physics. Reader Notes 5, https://doi.org/10.21468/SciPostPhysLectNotes.5 (2018).
Coissard, A. et al. Data for imaging tunable Quantum Hall broken symmetry orders in graphene. Zenodo https://doi.org/10.5281/zenodo.5838139 (2022).