Land implications of the first climate actions without negative net global emissions

  • 1.

    Rogelj, J. et al. A new scenario logic for the long-term temperature goal of the Paris Agreement. Nature 573, 357-363 (2019).

    Google Scholar CAS

  • 2.

    Anderson, K. & Peters, G. The problem of negative emissions. Science 354, 182-183 (2016).

    Google Scholar

  • 3.

    Peters, GP & Geden, O. Catalyzing policy change from low carbon to negative carbon. Nat. Clim. Switch 7, 619-621 (2017).

    Google Scholar

  • 4.

    Clarke, L. et al. International climate policy architectures: overview of international EMF scenarios 22. Energy saving. 31, S64 – S81 (2009).

    Google Scholar

  • 5.

    Kriegler, E. et al. The role of technology in achieving climate policy goals: an overview of the EMF 27 study on global technology and climate policy strategies. Clim. Switch 123, 353-367 (2014).

    Google Scholar

  • 6.

    Clarke, LKJ et al. in Climate change 2014: climate change mitigation (eds Edenhofer, O. et al.) 413-510 (IPCC, Cambridge Univ. Press, 2014).

  • 7.

    World Energy Outlook 2015 (IEA, 2015).

  • 8.

    van Vuuren, D. et al. A new scenario framework for climate change research: matrix scenario architecture. Clim. Switch 122, 373-386 (2014).

    Google Scholar

  • 9.

    Meinshausen, M. et al. Greenhouse gas emission targets to limit global warming to 2 ° C. Nature 458, 1158-1162 (2009).

    Google Scholar CAS

  • ten.

    Matthews, HD, Gillett, NP, Stott, PA & Zickfeld, K. The proportionality of global warming to cumulative carbon emissions. Nature 459, 829-832 (2009).

    Google Scholar CAS

  • 11.

    Fuss, S. et al. Focus on negative emissions. Nat. Clim. Switch 4, 850-853 (2014).

    Google Scholar CAS

  • 12.

    Shue, H. Climate dream: negative emissions, risk transfer and irreversibility. J. Hum. Rights Approx. 8, 203-216 (2017).

    Google Scholar

  • 13.

    Williamson, P. Emissions Reduction: Taking a Look at CO2 removal methods. Nature 530, 153-155 (2016).

    Google Scholar CAS

  • 14.

    Smith, P. et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Switch 6, 42-50 (2016).

    Google Scholar CAS

  • 15.

    Popp, A. et al. The future of land use in shared socio-economic pathways. Glob. About. Switch 42, 331-345 (2017).

    Google Scholar

  • 16.

    Field, CB & Mach, KJ Resizing Carbon Dioxide Removal. Science 356, 706-707 (2017).

    Google Scholar CAS

  • 17.

    Boysen, LR et al. The limits of the mitigation of global warming through the elimination of terrestrial carbon. The future of the earth 5, 463-474 (2017).

    Google Scholar CAS

  • 18.

    Morrow, D. & Svoboda, T. Geoengineering and non-ideal theory. Aff. Public Q. 30, 83-102 (2016).

    Google Scholar

  • 19.

    Fujimori, S., Rogelj, J., Krey, V. & Riahi, K. A new generation of emissions scenarios should cover blind spots in the carbon budget space. Nat. Clim. Switch 9, 798-800 (2019).

    Google Scholar CAS

  • 20.

    Fuss, S. et al. Negative Emissions — Part 2: Costs, Potentials and Side Effects. About. Res. Lett. 13, 063002 (2018).

    Google Scholar

  • 21.

    Bauer, N. et al. Global Energy Sector Emissions Reductions and Bioenergy Use: An Overview of the Bioenergy Demand Phase of the EMF-33 Model Comparison. Clim. Switch 163, 1553-1568 (2018).

    Google Scholar

  • 22.

    Roe, S. et al. Contribution of the terrestrial sector to a world at 1.5 ° C. Nat. Clim. Switch 9, 817-828 (2019).

    Google Scholar

  • 23.

    Hanssen, SV et al. The climate change mitigation potential of bioenergy with carbon capture and storage. Nat. Clim. Switch ten, 1023-1029 (2020).

    Google Scholar CAS

  • 24.

    Hasegawa, T. et al. Food security in the context of a strong demand for bioenergy towards long-term climate objectives. Clim. Switch 163, 1587-1601 (2020).

    Google Scholar

  • 25.

    Ohashi, H. et al. Biodiversity can benefit from climate stabilization despite the negative side effects of terrestrial mitigation. Nat. Common. ten, 5240 (2019).

    Google Scholar

  • 26.

    Riahi, K. et al. Locked in the Copenhagen Commitments – Implications of Short-Term Emissions Targets for the Cost and Feasibility of Long-Term Climate Targets. Technol. Forecast. Soc. Switch 90, 8-23 (2015).

    Google Scholar

  • 27.

    Rogelj, J. et al. to the IPCC Special report on global warming of 1.5° C (eds Masson-Delmotte, V. et al.) 93-174 (OMM, 2018).

  • 28.

    Luderer, G. et al. Residual fossil CO2 emissions in the tracks from 1.5 to 2 ° C. Nat. Clim. Switch 8, 626-633 (2018).

    Google Scholar CAS

  • 29.

    McCollum, DL et al. Energy investment needs to fulfill the Paris Agreement and achieve the Sustainable Development Goals. Nat. Energy 3, 589-599 (2018).

    Google Scholar

  • 30.

    Tebaldi, C. & Knutti, R. The use of the multi-model set in probabilistic climate projections. Phil. Trans. R. Soc. A 365, 2053-2075 (2007).

    Google Scholar

  • 31.

    Thompson, SG & Higgins, JPT How should meta-regression analyzes be undertaken and interpreted? Stat. Med. 21, 1559-1573 (2002).

    Google Scholar

  • 32.

    Fujimori, S. et al. Inclusive policy for climate change mitigation and food security under the climate target of 1.5 ° C. About. Res. Lett. 13, 074033 (2018).

    Google Scholar

  • 33.

    Fuhrman, J., McJeon, H., Doney, SC, Shobe, W. & Clarens, AF From zero to hero? Why integrated assessment modeling of negative emissions technologies is difficult and how we can do better. Before. Clim. 1, 11 (2019).

    Google Scholar

  • 34.

    Nemet, GF et al. Negative Emissions — Part 3: Innovation and Scaling Up. About. Res. Lett. 13, 063003 (2018).

    Google Scholar

  • 35.

    Realmonte, G. et al. An inter-model assessment of the role of direct air capture in in-depth mitigation pathways. Nat. Common. ten, 3277 (2019).

    Google Scholar CAS

  • 36.

    Beerling, DJ et al. Agriculture with crops and rocks to combat global climate, food and soil security. Nat. Plants 4, 138-147 (2018).

    Google Scholar

  • 37.

    High-level review of a wide range of marine geoengineering techniques on offer (GESAMP, 2019).

  • 38.

    Fujimori, S. et al. SSP3: implementation of the AIM of shared socio-economic paths. Glob. About. Switch 42, 268-283 (2017).

    Google Scholar

  • 39.

    Fujimori, S., Masui, T. & Matsuoka, Y. AIM / CGE [Basic] Manual (Tsukuba Center for Social and Environmental Systems Research, NIES, 2012).

  • 40.

    Hasegawa, T., Fujimori, S., Ito, A., Takahashi, K. & Masui, T. Comprehensive land-use model linked to an integrated valuation model. Sci. About. 580, 787-796 (2017).

    Google Scholar CAS

  • 41.

    Frank, S. et al. Reduce greenhouse gas emissions in agriculture without compromising food security? About. Res. Lett. 12, 105004 (2017).

    Google Scholar

  • 42.

    Fricko, O. et al. The quantification of the markers of Shared Socio-economic Path 2: an intermediate scenario for the 21st century. Glob. About. Switch 42, 251-267 (2017).

    Google Scholar

  • 43.

    Havlik, P. et al. Mitigation of climate change through transitions of livestock systems. Proc. Natl Acad. Sci. United States 111, 3709-3714 (2014).

    Google Scholar

  • 44.

    Keramidas, K., Kitous, A., Després, J. & Schmitz, A. POLES-JRC model documentation (CCR, 2017).

  • 45.

    Popp, A. et al. Protection of land use for climate change mitigation. Nat. Clim. Switch 4, 1095-1098 (2014).

    Google Scholar CAS

  • 46.

    Bodirsky, BL et al. Reactive nitrogen requirements to feed the world in 2050 and nitrogen pollution mitigation potential. Nat. Common. 5, 3858 (2014).

    Google Scholar CAS

  • 47.

    Emmerling, J. et al. The WITCH 2016 model – Documentation and implementation of shared socio-economic pathways (Feem Working Paper n ° 42, 2016).

  • 48.

    Hasegawa, T. et al. Risk of increased food insecurity as part of a strict global climate change mitigation policy. Nat. Clim. Switch 8, 699-703 (2018).

    Google Scholar

  • 49.

    Fujimori, S. et al. A multi-model assessment of the food security implications of climate change mitigation. Nat. To support. 2, 386-396 (2019).

    Google Scholar

  • Source link

    About Alexander Estrada

    Check Also

    Portfolio rebalancing via DeFi needs to be simplified to be adopted

    Central banks and key leaders are sounding more and more alarms about rising inflation, causing …

    Leave a Reply

    Your email address will not be published. Required fields are marked *